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• Provide a flexible, data driven 
bioinformatic modeling environment that 
assists users in: 
– Integrating diverse sources of data
– Interpreting large data sets
– Making quantitative predictions

Key modeling tool: Bayesian Networks

Team Goals
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• Bayesian describe causal or apparently causal 
relationships 

weight
Δ

ALT

survival

RBC

P(ALT)
high low

weight
Δ procedure

up sham     0.4        0.6
down sham            0.1        0.9
up treatment     0.98      0.02
down treatment     0.80      0.20
up control         0.05      0.95
down control         0.001    0.999

procedure

If (weight Δ =up & procedure=sham) then ALT=low

Bayesian Networks: General

P(ALT=low)=0.6
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• Bayesian networks are another way of expressing 
conditional probabilities

P(R,A,W,P,S)

A model

= P(R) P(A| W, P) P(P) P(W | P) P(S | A, P)
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survival
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How can we automatically 
find which model fits the 

data best?

Bayesian Networks: General
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Model fit assessed with Bayes’ Rule:

P(Model | Data) = P(Data | Model) P(Model) / P(Data)

P(Data | Model): evaluated using probability theory
P(Model): prior probability for each models or set of features
P(Data): probability of this particular data set given all other 

possibilities and knowing nothing of the model.

Goal: find the candidate structure that maximizes 
the Bayes score,  log( P(Model | Data) )

Bayesian Networks: General
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Model 1 Model 2

P(Model 1 | Data)=0.0754 P(Model 2 | Data)=0.0129

P(Model 1 | Data) > P(Model 2 | Data)
Model 1 fits the data better 
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Bayesian Networks: Searching
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Three Modeling Directions
1. Biomarker Identification
2. Static Bayesian Networks
3. Dynamic Bayesian Networks
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Biomarker Identification
GOAL: Identify maximally relevant combinations of 

nonlinear predictors of any biological outcome.

• Correlation methods 
identify linear 
relationships (#1), but 
can’t find nonlinear 
relationships (#2)

• Many useful markers are 
likely nonlinear

• Short lists of biomarkers 
are often better
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Biomarker Identification

• MARKIT uses a Bayesian network engine to identify  
biomarkers from hundreds of thousands of variables 
for 2 parents, or tens of thousands for 3 parents. 

Beta Software available at:
http://www-personal.umich.edu/~welchr/biomarker/
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Biomarker Identification
Example 1: Molecular differential 

diagnosis of bipolar & 
schizophrenia

- 68 Affymetrix profiles of 
neutrophils from patients

Example 2: FUSION Type 2 
Diabetes SNP identification

- ~2000 samples, each with 
300k SNPs

Gene a

Bipolar?

Gene b Gene c

SNP 1

Diabetes

SNP 2 SNP 3
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GOAL: Identify mechanistic pathways from data and 
user experience.

Focus area: Chinnaiyan data to identify plausible 
mechanisms in prostate cancer

Static Bayesian Networks

Drug 1

A-B complex

Gene B

Metastasis

Gene C

Gene A
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Data Integration: 
Promises and Pitfalls

• Most modeling efforts focus on a single data type
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Data mRNA Model
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Data Integration: 
Promises and Pitfalls

• Integrating more data makes the model more 
complete and complex

Data mRNA, protein Model

From http://www.med.monash.edu.au
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DWhat does this mean?  
What is the mechanism?
What does this mean?  

What is the mechanism?
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Data Integration: 
Data Types

• Two kinds of are data possible:
Observational: Relational:
Shows what Constrains what 
does happen could happen.?
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Data Integration: 
Data Types

Relational data: Limits which mechanisms 
are possible.

• Which proteins can form complexes?
• Which proteins can phosphorylate 

which targets?
• Which transcription factors can regulate 

which targets?

MiMI, NLP, GeneGo
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Observational Data Relational Data
CAN

PHOSPHO.
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BIND C
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ACT AS
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d

a

Possible Model: “Biological Story”:
Based on all data, protein D 
is most likely regulated by 
phosphorylated C bound to 
B.

Goal:
Maximize P(model | data)

Cp

D

CpB

NLC ?
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Java interface for learning, modifying, and interpreting 
Bayesian networks

Beta version online: 
http://sysbio.engin.umich.edu/~mirka/startappl.jnlp

OR
http://werewolf.engin.umich.edu:8080/

(less flexible, but more reliable)

Bubble
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http://werewolf.engin.umich.edu:8080/
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GOAL: Learn apparently causal mechanisms from 
temporal data (when we have it)

Dynamic Bayesian Networks
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Unrolled Network
Dynamic Bayesian Networks
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These are both examples of 
Dynamic Bayesian Networks

(DBNs)

OR

Collapsed Network
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MiniTUBA
Web interface for learning and visualizing Dynamic 

Bayesian Networks
http://www.minituba.org/



National Center for Integrative Biomedical Informatics

Top scoring network
P(M|D)~ 0.9998
Networks searched: >2 billion

Top Scoring Dynamic Bayesian 
Network
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Connections present in all of the top 30 network structures.

Dynamic Bayesian Network 
Conserved Edges
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Approximate 
rule:

If(K*NE>WBC)
then LY=low -5
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Example Relationship: Lymphocytes 
(LY) and Neutrophils (NE) predict 

white blood cells (WBC)
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DBNs for clinical and experimental research: 
Future Vision

Because model is constantly updating, it will dynamically learn 
and adapt based on all of the data

User enters data as 
they are gathered 
into a web based 
form

Data are incorporated 
into the existing 
dynamic Bayesian 
network
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Model predicts the impact 
of various treatments

Model suggests treatment that maximizes survival 
probability or maximizes information content
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Questions?
To try the tools out go to:

Bubble:
http://sysbio.engin.umich.edu/~mirka/startappl.jnlp

http://werewolf.engin.umich.edu:8080/
miniTUBA:

http://www.minituba.org/

Bayesian Biomarker ID:
http://www-personal.umich.edu/~welchr/biomarker/

Or email me:
pwoolf@umich.edu
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Corrections:

• Find a way to set up for Matthias as the final punch

• Provide example from Bubble for Chinnayn data (how to use?)

• Color graph to show how this stuff works out.

Updates:

Start out with a vision both of how it is and how it should be. Then show how it works.

Biomarkers--fusion, and McInnins, and Feldman

Transcriptional networks--how do they work?

Bubble to DOOBN

•DBN

•Include email, focus on DBPs

•“Biology is an information science” by lee hood

• TF regulation of gene expression

•alanine transaminase=ALT test

•Ricardo Del Faveo in Colloumbia to study B-cell lymphoma. (working with Adndreas)

•-lots of different geen expression data a

•Do DBPs really drive the computation, or is it something else?

•Odd that “biological discovery” and “biological modeling” are seen as different. Maybe this is my bioinformatics vs systems biology.

•Data are provided via wiki as a mechnanism.
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